Labelencoder: typeerror: '>' not supported between instances of 'float' and 'str'
I'm facing this error for multiple variables even treating missing values. For example:
le = preprocessing.LabelEncoder()
categorical = list(df.select_dtypes(include=['object']).columns.values)
for cat in categorical:
print(cat)
df[cat].fillna('UNK', inplace=True)
df[cat] = le.fit_transform(df[cat])
# print(le.classes_)
# print(le.transform(le.classes_))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-24-424a0952f9d0> in <module>()
4 print(cat)
5 df[cat].fillna('UNK', inplace=True)
----> 6 df[cat] = le.fit_transform(df[cat].fillna('UNK'))
7 # print(le.classes_)
8 # print(le.transform(le.classes_))
C:\Users\paula.ceccon.ribeiro\AppData\Local\Continuum\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py in fit_transform(self, y)
129 y = column_or_1d(y, warn=True)
130 _check_numpy_unicode_bug(y)
--> 131 self.classes_, y = np.unique(y, return_inverse=True)
132 return y
133
C:\Users\paula.ceccon.ribeiro\AppData\Local\Continuum\Anaconda3\lib\site-packages\numpy\lib\arraysetops.py in unique(ar, return_index, return_inverse, return_counts)
209
210 if optional_indices:
--> 211 perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
212 aux = ar[perm]
213 else:
TypeError: '>' not supported between instances of 'float' and 'str'
The variable that led to the error is checked in
df['CRM do Médico'].isnull().sum()
0
What could cause this error?
Best Answer
This is due to the series df[cat]
containing elements that have varying data types e.g. (strings and/or floats). This could be due to the way the data is read, i.e. numbers are read as float and text as strings or the datatype was float and changed after the fillna
operation.
In other words
pandas data type 'Object' indicates mixed types rather than str type
so using the following line:
df[cat] = le.fit_transform(df[cat].astype(str))
should help